Suppression of adverse angiogenesis in an albumin-based hydrogel for articular cartilage and intervertebral disc regeneration.
نویسندگان
چکیده
An injectable polyethylene glycol-crosslinked albumin gel (AG) supplemented with hyaluronic acid as a matrix for autologous chondrocyte implantation was evaluated with regard to its impact on angiogenesis. Healthy articular cartilage and intervertebral discs (IVD) are devoid of blood vessels, whereas pathological blood vessel formation augments degeneration of both theses tissues. In contrast to human endothelial cells, primary human articular chondrocytes encapsulated in the AG retained their viability. Endothelial cells did not adhere to the gel surface to a significant extent nor did they proliferate in vitro. The AG did not release any diffusible toxic components. Contrary to Matrigel employed as positive control, the AG prevented endothelial chemoinvasion in Transwell filter assays even in the presence of a chemotactic gradient of vascular endothelial growth factor. In ovo, the AG exhibited a barrier function for blood vessels of the chick chorioallantoic membrane. Subcutaneous implantation of human IVD chondrocytes enclosed in the albumin gel into immunodeficient mice revealed a complete lack of angiogenesis inside the gel after two weeks. At the same time, the IVD chondrocytes within the gel remained vital and displayed a characteristic gene expression pattern as judged from aggrecan, collagen type I and type II mRNA levels. In summary, aiming at articular cartilage and IVD regeneration the albumin gel promises to be a beneficial implant matrix for chondrocytes simultaneously exhibiting non-permissive properties for adverse endothelial cells.
منابع مشابه
Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits
INTRODUCTION Synovial mesenchymal stem cells (MSCs) have high proliferative and chondrogenic potentials, and MSCs transplanted into the articular cartilage defect produce abundant extracellular matrix. Because of similarities between the articular cartilage and the intervertebral disc cartilage, synovial MSCs are a potential cell source for disc regeneration. Here, we examined the effect of int...
متن کاملRheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair
BACKGROUND Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue...
متن کاملAn experimental study of the regeneration of the intervertebral disc with an allograft of cultured annulus fibrosus cells using a tissue-engineering method.
STUDY DESIGN Cultured annulus fibrosus cells within an atelocollagen honeycomb-shaped scaffold with a membrane seal were allografted into the lacunas of intervertebral discs of which the nucleus pulposus had been vaporized using an indocyanine green dye-enhanced laser. Regeneration of the intervertebral disc was assessed based on the viability and histologic status of the allografted annulus fi...
متن کاملA Review Study: Using Stem Cells in Cartilage Regeneration and Tissue Engineering
Articular cartilage, the load-bearing tissue of the joint, has limited repair and regeneration ability. The scarcity of treatment modalities for large chondral defects has motivated researchers to engineer cartilage tissue constructs that can meet the functional demands of this tissue in vivo. Cartilage tissue engineering requires 3 components: cells, scaffold, and environment. ...
متن کاملArticular Cartilage and Intervertebral Disc Degeneration in Mice Lacking Early Growth Response Protein-1 (EGR-1)
Articular Cartilage and Intervertebral Disc Degeneration in Mice Lacking Early Growth Response Protein-1 (EGR-1) Kevin Debiparshad1, Fackson Mwale1, Peter Roughley2, Lorraine Chalifour3, John Antoniou1 1Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada; 2Department of Surgery, McGill University, Montreal, QC, Canada; 3Division of Experimental Medicine, McGill University, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European cells & materials
دوره 20 شماره
صفحات -
تاریخ انتشار 2010